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CLOSED m m ,  Low MACH NUMBER pulw OF A 

*. 

Henri Viviand 
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ABSTRACT. The problem of a steady, non-viscous, low- 
Mach number flow with closed streamlines is solved. 
ized Bernoui l l i  equation is derived, 

A general- 

I 

% I  gtrodugtign m 
I. 

It is .known t h a t  i n  the steady flow of an incompressible, nonviscous 
, 

flow, the  vortex along a streamline is  e i the r  constant o r  proportional t o  

thed i s t ancey  from the  axis  of revolution, depending on whether it is a plane 

flow o r  a flow having symmetry of revolution. 

is t h e  in tens i ty  of the  vortex vector,  a = 0 i n  the  plane case and a = 1 i n  

' the case of the flow of revolution, then 

' function $. 

' upstream conditions a t  in f in i ty .  

-a If we set a = wy where w 

w i l l  only depend on the  stream 
The function 52(Y)*is obtained i n  general by considering the 

I 

i 

, However, i f  'we are dealing with a flow having closed streamlines within 

the  i n t e r i o r  of a bounded region (D) which i s  assumed t o  be  simply connected? 

there  is not a s ing le  condition which allows one t o  determine Q ( Y ) .  Prandtl  [ l l 0  
and Batchelor [ Z ]  showed how the  viscosi ty ,  no matter how s m a l l  i t  is, enters  

1 

, and imposes the condition 52 = constant f o r  the  steady flow within (D) 
when the  Reynolds number becomes i n f i n i t e .  It is necessary t o  assume t h a t  t h e  

' viscous a f f ec t s  str ive t o  zero everywhere within (D) except within a viscous 

' layer  located along the  boundary (C) of (D). 

I * %umber in the  margin ind ica te  the  pagination i n  the  or ig ina l  foreign text. , 
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$ I n  the  case of a per fec t ,  compressible f lu id ,  i.e., i n  which the v iscos i ty  

' 
and thermal conductivity are zero, the entropy S and the  t o t a l  enthalpy H 
remain constant along the  streamline , and Sl is given by the  expression: 

*. where p is  the  volume mass density, and T the  temperature. I n  general, Sl 

is not constant along a streamline . 
having closed streamlines iscannot be determined except by taking i n t o  

the cumulative viscosi ty  e f fec ts  and the thermal conductivity, no matter how 

small they are. 

The functions S ( Y )  and H ( Y ) ,  i n  a flow 

account 

It appears t h a t  there  is only a general result f o r  these 

two functions, as is  the  case f o r  Sa i n  the incompressible case. 

By l imi t ing  ourselves t o  the  case of compressible f l u i d  a t  low Mach numbers; 

one could be tempted t o  d i r ec t ly  apply the  results of Prandtl  and Batchelor. 

One would postulate  t h a t  if the  Mach number i s  s m a l l  the volume mass density 

i s  constant t o  a first approximation, This reasoning is only accurate i f  it 

is  assumed tha t  t he  relative var ia t ions of the  temperature i n  the flow are of 
order 2 where M is a cha rac t e r i s t i c  Mach number. However, i f  no r e s t r i c t i o n  

' is imposed on the  temperature, t he  volume mass'density is var iable  and it is 
appropriate to analyze t he  problem i n  a bas ic  way. This fs what w e  propose 

' in this note. 
I 

11. General Equations 

The dimensional. .variables are characterized by an aster isk.  The HIOIL- L .  

dimensional variables are defined by the relationships:  

, 



) 

I ,  * * and pr In  these def ini t ions,  U*, pr  are cha rac t e r i s t i c  values of velocity,  i 

1 volume mass density, and pressure, respectively. The. characteristic temperature 

value is chosen as T* = pr / ( R p : ) ,  assuming t h a t  the  f l u i d  under consideration 

is  a perfect  gas having constant R. 
region (0) The cha rac t e r i s t i c  Mach number of t he  flow is 

* 
r 

L" is a cha rac t e r i s t i c  dimension of the  

where 

* is t h e  speed of sound a t  the  temperature'Tr. 

I .  

A c l a s s i ca l  method of studying flows at  l o w  Mach number consis ts  of 
-t 

wri t ing  u, p, p 

w i l l  only consider t he  f i r s t  approximation defined by the  f i r s t  term of each 

of these expansions. 

approximation statisfies-il They are given by t he  ,following: 

etc. i n  the  form of expansions i n  powers of 2. Mere we 

It,is easy t o  e s t ab l i sh  equations which t h i s  f i r s t  

: continuity 

, 
' momentum 

where 

f 

1 energy 

! - -. . . - . . 
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' 1  

i 
, equation of state 

(4) , pT = 1. 

' ' Below it is understood-that every variable -which:Lszwritten in these equations, - -_ 
2 is in fact the first term of an expansion in powers of M , and we have omitted 

the identification of the first term by the index zero in order to simplify 
the notation. 

' ". 

The non-dimensional viscosity coefficients A ,  1.1 and the non-dimensional 
thermal conductivity coefficients k, which are only functions of temperature, 
are defined by the relationships: 

i 

The Reynoidil L ..-- &d Prandtl numbers are defined by: 
. - -__c( 

1 respectively. 
I /  

It is clear that if small temperature variations are assumed, more 
we have T = 1 to 2 accurately if they of order M 

therefore p = 1 according to (4). 
fluid flow,and the result of On the other hand, 
if no restriction is made regarding the temperature, the mass volmme density 
is variable #butl its variations are mot due to temperature variations, as 

a first approximation,and 
We are led to the case of an incompressible 

Prandtl-Batchelor applies. 

, $quation (4) shows. 
i 
i 

' I  The continuity equation makes it possible to introduce a stream function 
Y having the following properties, 

i i '  
either for _I plane flow or flow of revolution: 

(5) 

- ___ . -_ - _-_ 
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where u and v are t h e  components of the  veloci ty  u along the  axes Ox and Oy, 

respectively. 

and a = 0 i n  the  plane case and a = 1 i n  t h e  flow of revolution case. 

Ox is  the  axis of revolution i n  the  case of a flow of revolution, 

L e t  us now study the  solut ion of t he  system of Equations (1) through (4) 
when Re  goes towards in f in i ty ,  acknowledging tha t  the flow within the  i n t e r i o r  

(0) strives towards perfect f l u i d  flow except for a boundary layer  of 
Re -'I2 located along the  boundary (C) of (D). 

thickness 

L e t  us consider t he  l imit ingcase where 1 / R e  = 0, according t o  (3) and (4); 
can be seen t h a t  p and T it 

therefore  have: 

remain constant along a streamline9'and w e  - - 

-+ 
L e t  

us set: 

be a uni t  vector tangent t o  a streamline , directed along U. L e t  

2 - k  

L e t  n' be the  uni t  vector perpendicular t o  s i n  the plane xOy. I f  we 

consider ( 6 ) ,  and the relationship: 

i t  can eas i ly  be derived from (2), f o r  1 / R e  = 0, t h a t  the  quantity 

. '  is constant along a streamline-\: L __--- 
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and the vortex tu is given by the  expression: 
8 

111. Determination of p ( Y )  

' Jus t  as i n  the  incompressible case i n  which w ( Y )  is determined, i n  order 

t o  determine p&. it is necessary to  take i n t o  account d i ss ipa t ive  e f fec ts .  

The energy .Equation (3) can be wr i t ten  as follows by taking i n t o  account 

(1) and (4); 

11 i 
! 

k(T) grad T I  =O. 

For any closed 'path, (l') within the i n t e r i o r  (0) w e  have: 

.. - . . 

-t , where n is a uni t  normal on (l') L e t  us select a stream&ine-< __ --- f o r  (l'). Thus, 
+ 4  u.n EO,,  and we find: 

- 

d; y%(T) grad T . 2  ds = 0. ' 

This relat ionship is independent of Reynolds number and thus should remain 

va l id  when R e  strives to  in f in i ty .  It should be noted t h a t  the  function k(T) 

is of order unity and is independent of Re. 

a function of Y, a@ the  relat ionship (9) gives: 

I n  a limit, fo r  1/Re = 0, T is only 

J, 2 cte , . -  (9 I 

Since the l h e  i n t eg ra l  is positive, it iS seen that we have of necessity 
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The s implici ty  of t h i s  result obviously results i n  s implif icat ions which 

can be introduced i n t o  the energy Equation (3) and the  equation of state (4) 
due t o  the hypothesis of t he  s m a l l  Mach number. 

done,because the viscous diss ipat ion is  ignored. 

In par t icu lar  this can be 

Equation ( 8 )  shows t h a t  0 is only a function of Y f o r  a perfect  f lu id :  

dF 
P-• dY . n5- 

On the other  hand, within the  i n t e r i o r  of the  boundary layer  along (C), 
p and T a revar iab leand  depend on the thermal conditions imposed along (C). 

IV. Determination of n(m 

The f a c t  that perfect  f l u i d  flow is incompressible does s o t  allow one t o  

conclude t h a t  we are l e d  t o  t h e  case studied 

that Q is  constant. I n  e f f ec t ,  i n  order t o  determine ip('f'), it  is necessary 

t o  use a relat ionship which holds no matter what Re is, and i n  a viscous 

f l u i d ' t h e  volume mass density is no longer 

by Prandtl  and Batchelor and 

constant. 

I n  order t o  obtain t h i s  kind of re la t ionship,  l e t  us multiply (2) 
+ -t 

sca la r ly  by s, a unit  vector  along u. L e t  us i n t e g r a t e -  along a streamline--, 

We obtain: 

I n  an incompressible f l u i d ,  the f i r s t  term would be  zeroiand (13) would 

be  independent of Re, This is not the case herepsand i n  order t o  make R e  

vanish from -(13),we_-w~itel1 
- - - - - I -. 
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and w e  use (3) and (4) f o r  transforming 3. gradp: 

The relat ionship (13) becomes: 

/51 

where the 

are of  order one and are independent of Re). 

Reynolds nlfmber has been eliminated (the functions k(T) and p(T) 

SLnce the  relat ionship (14) is  val id  f o r  any Re,  l e t  us apply t o  a 

non-viscous f l u i d  flow f o r  which p and T, and therefore k and p l  are constants. 

The f i r s t  term is zero i n  t h i s  case,and we have 

.+ 
because d iv  u = 0. 

of Y, w e  find: 

By tak.ing i n t o  account the  f a c t  t ha t  S2 is only a function 

and (15) becomes: 

We therefore  f ind  of necessity:  
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i n  a perfect  f l u i d  flow. 

Bernouill i  equation: 

Equation (12) therefore  leads t o  a generalized 

V. Conclusion 

A steady, non-viscous plane o r  axisymmetric f l u i d  flow of a perfect  gas 

a t  low Mach number having closed streamlines therefore  behaves t o  a f i r s t  

approximation l i k e  an incompressible f l u i d  flow. The volume mass density, 

the temperature and Ci are uniform i n  the non-viscous flow. 

Manuscript submitted December 3, 1969. 
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